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XIII. On Electrical Motions in o Spherical Conductor.

By Horace Lams, M. A., formerly Fellow of Trinity College, Cambridge, Professor
of Mathematics vn the University of Adelaide.
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Tuis paper treats of the motions of electricity produced in a spherical conductor by
any electric or magnetic operations outside it. The investigation was undertaken
some time ago in illustration of MAXWELL'S theory of Electricity. This theory is
so remarkable, more especially in the part which it assigns to dielectric media in the
propagation of electromagnetic effects, that it seemed worth while to attack some
problem in which all the details of the electrical processes could be submitted to
calculation, although it was evident beforehand, from the researches of HrLmmoLTzZ*
and others, that the results (so far as they are peculiar to the theory) would be of far
too subtle a character to admit of comparison with experiment. In studying the
mathematical character of the problem above stated I was led to a certain system
of formulee which I have since utilised in two communications to the London
Mathematical Society,t and which seem likely to be of use in a great variety of
physical questions.

§ 1 consists mainly of a recital of the fundamental equations and of the conditions
to be satisfied at the surface of a conductor. It is assumed, in the first instance, that
the magnetic susceptibility of the conductor is zero. .

In § 2 is introduced the assumption that all our functions vary as ", where ¢ is the
time, and X\ a constant. It is pointed out that this assumption is sufficiently general.
The fundamental equations are then put into a mathematically convenient form.
Before, however, proceeding to apply these equations as they stand, I examine the
effect of assuming that the velocity (v) of propagation of electromagnetic effects in
the medium surrounding the conductor is practically infinite. This assumption,
which has been made by all writers (including MaxwEeLL himself) who have applied
MaxweLLS theory to ordinary electromagnetic phenomena, greatly simplifies the
calculations without sensibly impairing the practical value of the results. If L

* CrELLE, t. 72 (1870).
+ “On the Oscillations of a Viscous Spheroid,” Proc. L. M. 8., Nov. 10, 1881; and “On the
Vibrations of an Elastic Sphere,” May 11, 1882.
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520 PROFESSOR H. LAMB ON ELECTRICAL

stand for a linear dimension of the conductor and p for its specific resistance, it will
appear in the sequel that when as in all practical cases \ is small compared with
v/Li, the error introduced by the assumption in question is of the order Ap/v*. For
any ordinary metallic conductor, and for any value of N which can be appreciated
experimentally, this fraction is excessively minute.

In § 3 the solutions of our equations (on the assumption above indicated) are given
in the form appropriate to our present problem. These solutions are of two distinct
types. Those of the first type, which are much the more important from an experi-
mental point of view, have (I find) been discussed, though by a different method, by
Professor C. NIVEN in a paper recently published.* As the points to which attention
has been directed are for the most part sufficiently distinct in the two investigations,
I have allowed the corresponding portions of my paper to stand.

In § 4 T discuss the case of electric currents started anyhow in the sphere and left
to themselves. The equation which gives the “moduli” of the natural modes of
decay of the first type agrees with the result obtained by Professor NIVEN.

In § 5 is studied the case of induced currents. Since any disturbance in the field
(however arbitrary) can be expressed, as regards the time, by a series of simple
harmonic terms, it is sufficient to consider the case when the variations in the
inducing system follow the simple harmonic law. This case has moreover acquired
a special interest since the invention of the telephone.

The two extreme cases, when the period of the variation in the field is very large
or very small in comparison with the time of decay of free currents in the sphere, are
discussed in some detail.

In § 6 the case of a thin spherical shell is briefly examined.

I next proceed to investigate what modifications must be introduced into the
methods and the results of the preceding sections when the substance of the sphere
is susceptible of magnetisation. This occupies §§ 7, 8, 9, 10.

In the remaining sections of the paper I investigate the solution of our fundamental
equations, taking account of the finite value of ». The corrections to our former
results are of most interest in the solutions of the second type. Although the
preceding theory, based on the assumption w=woo, is sufficient for all purposes of
comparison with experiment, there are certain processes of (at all events) theoretical
interest of which it fails altogether to give an aceount, viz., all those cases in which
aazy change in the superficial electrification of the sphere takes place. For the
expression of these the solutions of the second type are appropriate. There is no
difficulty in working out the requisite formule, but in the application to the case
of free motion a difficulty of interpretation arises which is noticed in the proper

place.
1. Let us suppose that we have one or more concluctors at rest .in an insulating

* Phil. Trans., 1882. The date of the paper is January, 1880.
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medium. If F, G, H be the components of electromagnetic momentum, u, v, w those
of electric current, at the point (z, ¥, ), we have on MAXWELL'S theory

v = —47u
VOG=—4m > . . . . . . . . . (]
v H=—47w
and
dF  dG . dH
—d5+@+ﬁ;"0’ e e e (2),

where v* stands for d?/da®+d?/dy®*+d?/dz®. These equations hold good in conductors
and insulators alike, provided that (as we shall assume for the present) the magnetic
permeability in neither case differs sensibly from unity.

In the conductors we have, if p be the specific resistance,

__ 9 _drn
PU=— 0 dt
i dG .
p’v— —dy S— dt L . . . . . N . . . (3).
__4d¢ di
PU=""0 " ar

The expressions on the right-hand side of (3) are the components of electromotive
force, ¢ being a function which, in the case of steady motion of electricity, is known
by the name of the “ electric potential.”*

In the dielectric we have, if f; g, & be the components of electric displacement, and
1/v* the specific inductive capacity, measured (like all our quantities) on the electro-
magnetic system,

dp  dF
Qfe T
dm’f= i
d$  dG
2 e L e e . :
47wg_..dydt>.........(4).
d¢ dH
2 e LT
4mvth= &t

v is the velocity of propagation of electromagnetic effects in the dielectric medium,
If this be air, v also denotes the number of electrostatic units in one electromagnetic
unit of electricity. .

The conditions to be satisfied at the boundary of a conductor are that F, G, H and

% In other cases, as will be seen, this name is less appropriate.
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their first derivatives must be continuous. This follows at once from the expressions
for F, G, H in terms of the electric currents in the field, viz.,

C

F= ”%dw’dy’dz' )

G:.‘ ﬁq;—jolm’dy’olz’ L (5),

H=([[“dwdy e
e J

where 7 denotes the distance from the element dx'dy’'dz’ to the point (x, y, z) at which
the values of F, G, H are required. Hence if «, b, ¢ be the components of magnetic
induction, viz.,

a6
_dg/ dz
dF dH
b= = T (6),
@ _ar
de dy |

these quantities will be continuous at the surface of a conductor. Conversely we may
show that if F, G, H, a, b, ¢ be continuous then the first derivatives of F, G, H will
all be continuous. For this it is sufficient to prove that their derivatives in the
direction of the normal will be continuous. If /, m, n be the direction-cosines of the
normal, we have

dF dF dF aF A dH
ld—;—l-m @-+n o _.-ld;+m ZZ;—}-n d?+nb—mc

aG dG dH dH
=<mzl;—Z@>—<ld—z—n;l—m->+nb—-mc. (7)),

by (2), and it is easily seen from geometrical considerations that the continuity of G
implies the continuity of (m.dG/dx—I1.dG/dy), and so on. Hence if ¥, G, H, a, ), ¢
be continuous, the first member of (7), and the corresponding expressions for the
normal derivatives of G and H, are continuous.
From this point the letters u, v, w will be used to denote solely the components of
current n the conductors. The components of current in the dielectric are f, g, h.
The general solenoidal conditions to be satisfied by u, v, w and f, g, &, viz,

dw  dv . dw
do Vdy T (8).
and
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af | dg
dt<dw+dy+dz> R )
require, by (3) and (4),
V=0 . . . . . . . . . . . (10),
in the conductors, and
Vgé?:(). . (ll)
= Ce e ,

in the dielectric. The superficial solenoidal condition

1Y Yy,
lu+mv+nw_ldt +mdt
requires, by (1), the continuity of
Iv*F+mv*G+nv*H,

t.e., of
da da do de de

(g JH G (215

but this is implied in the continuity of a, b, c.

If dv/, dv” be elements of a normal to the surface of a conductor, on the inside and
outside respectively, we find from (3) and (4), taking account of the continuity of
F, G, H,

<¢+ ¢> dmv¥(lf+mg+nh)— p(lu+motnw);
or, if o denote the surface density of electricity,
d ' d
( ¢+d¢,’,) T N ¢ £:))

Hence it is only when the currents are steady that the relation hetween ¢ and the
free electricity in the field is the same as in electrostatics,™
If T be the kinetic and V the potential energy of the field, we have

1=} [[(PutGo-+ Huo)dardyds

+i[[[@Go+BiNagmar . . . (),
V=2wvszf(f9+92+h2)dfdndl N

* This pectliarity of Maswerr’s theory has been pointed out by C. Nivex, loc. cif.
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where, for the moment, the coordinates w, ¥, z refer to the conductors, and &, 3, { to
the dielectric. Let us form the equation of energy for the case where disturbances

produced anyhow in the field are left to themselves.

‘We have

’iT___ ( rf Fu+Fut &e.)dadydz

I
-+ % H Wf b Wf+ &e.)dédnydl
|

[(Fut-Go- V) dedyd:

"“_”(Ff+(.}§+1°{i},)d§dnd§ R $ 1)

Substituting the values of F, G, H from (3) and (4), we find

| %z _ J‘ f ( p(W? 4"+ w?)dxdydz

— | [[( g9+ M)Attt
—”K d¢+ —l— dq[—’)dxdydz
(1075 +g”’¢+z S )agdnat

The last two integrals disappear in virtue of the solenoidal conditions satisfied by
the flow of electricity.t Hence

%(T'FW):—”fp(u2+v2+w2)d$dndl. L. .o(e).

This expresses that the electrical energy lost is equivalent to the heat generated in
the conductors according to JOULE’s law.

2. Now let us suppose that F, G, H, &c., all vary as ¢*. The electrical motions in
the conductors and in the surrounding dielectric may be of two kinds, free and forced.
In the various modes of free motion the corresponding values of \ are real and
negative. In the case of forced motion the disturbing force at any point of the
field may, by Fourier’s (double-integral) theorem, be expanded, as regards the time,
in a series of periodic terms. The effects of these can then be investigated separately
and afterwards superposed. The value of X corresponding to any one term is A= 2xp,
where p is the frequency, and 1=+/—1.

* This may be deduced from (1) by Grern’s Theorem. Tt is a particular case of THoMsoN and Tart,

§ 313 ().
1 Maxwrry's ¢ Blectricity,” § 100a.
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On the above assumption, (2) become

pto:—Z—f—)\F,&c.,&c. B ¢ 14

whence eliminating u, ¥, w by means of (1) we obtain as the equations to be satisfied
in the interior of a conductor

B dg
(i =5
1 dg
(V)G = ———@> Y ¢ 82
7c d([)
(=5
and
dF  dG dH
& tay (19),
where
k9=_@?...........(20).

In the dielectric we have

vF=—tr L= —im\, e, &e.

4m¥f= -%—)\F, &e., &e.
Eliminating f; ¢, I we obtain |
(V2 HA)F = _ 74N

NES A de
o — _d 0P 21
(PHAG==30 0 (2,
o AV — 0P
(VA H==370" ]
with
dF 4G dH )
d{l} +d3/ +—Li;/:=0 . . . . . . . . . . (52),
where
. A\
P==" 0L L (23)

So far our equations are exact. But it appears from various physical analogies
(more especially in Acoustics), and it will be verified in the course of this paper, that
when the dimensions of the conductors are small compared with j~' the phenomena
are sensibly the same as if j were =0. Now, in air, ¥=38X 10" [C.G.S.], whence
j~1=v/iN=38X 10'°/i\. Since \ is proportional to the rapidity of the electrical motions

MDCCCLXXXIIT, 3Y
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it appears that in all practical cases )~ is very large. We will therefore assume for
the present j=0, which comes to the same thing as assuming that the velocity of
propagation of electromagnetic effects in the dielectric medium is practically infinite.
The equations to be satisfied in the neighbourhood of the conductors then are

vF=0, v’G=0, v"H=0. . . . . . . . (24
dF  dG  dH
Bty TE=0 (20

Since IV*F4+my?’G4+ny’H must be continuous at the surfaces of the conductors it
appears at once that on the present assumption we shall have, at those surfaces,

lw+mvdnw=0. . . . . . . . . . (26)

3. Proceeding now to the special problem of this paper, viz., the case of a solid
spherical conductor surrounded by air, let us take the origin of coordinates at the
centre of the sphere, and let » denote the distance of any point from the origin. Tt
may be shown, as in the papers on the “ Oscillations of a Viscous Spheroid,” &c.,
already referred to, that the solutions of the equations (18), (19), and (24), (25) are of
two distinct types, which are quite independent of one another.

First Type. We have

In the conductor:

F= lp,,(lmn)< Y 7" %) X |

. .

G'__.‘Pﬂ(kr)(z é&:‘_mgl—z—> X ¢ ¢« o+ o e e e (27),
d d

H= ¢,,(lm)<m iy Y, m) Xe

where y, is a solid harmonic of positive integral degree n, and the function v, is

defined by

¢”(C)=1_2.27é:+3+242nf; on45 2 O
=(—)3.5. 2n—|—1<§d§) Si%ﬁ. C o (29),
from either of which forms we readily deduce
WO=—ggbald - - .. @),
WO+ W O=haD) . L (30)

¢)z(€)—¢71—1(€) Im+1. 2n+)llj”+l(£) ce e e (31),
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The equations (27) constitute the complete solution (of the first type) of (18) and (19)
subject to the condition of finiteness at the origin. In the absence of this restriction
we should have to add to the right-hand sides similar terms in which » is replaced
by —n—1.%

In the space surrounding the conductor we have

(o9}
Il
S
I\
g
I
&
=
~_
—_
i
+
e
L
L
N
'

(32),

where X,, X_},_l are solid harmonics of the algebraical degrees indicated by the
suffixes.

Since the values (27) of F, G, H make (v*+#4%) F=0, &c., &c., it follows by (1) that
the components of current inside the sphere are

(33).

<
1}
I
!'P-!t\a
RSy
—
o
=
S
N
N
%a.
&.
\_/
=
—~

The flow of electricity is everywhere perpendicular to the radius vector, and hence
¢=const., inside and outside the sphere.

From (27) and (32) we derive :—
Inside the sphere :

d o Jo2p2nt3 o
a= {(%-I-l) o (br) 2 — mgtbm(k") X 1}1

T2ynts

—{(7l+1)¢n-1(k7”)d— ot 1oms sk, xﬂ"‘g”“l}

d n k? 2n+3 o
0=—{(%+1)%—1(7f) e mlﬁm(kﬂ X7 1}

¥

(34)t

J

* These terms would be required in treating the case of a hollow spherical shell.
t These formulae make

ra+yb+ze=—n.n+ 1, (kr).x,

3Y 2
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Outside :
a= -—(n-l— 1)%+nd~%7
—(nt 1)‘Z’;”+ z‘%l . (35).
c=—-(n—|—1)d~f§’+nd~%f-'—lj
In deducing (34) we have made use of (29), (30), and of the known formula
ocxn——i?f%] (?ﬁ‘ OMH(};JX ;“9”‘1> Co oo (36).

We have now to apply the conditions to be satisfied at the surface of the sphere.
If R be the radius, the continuity of F, G, H requires

g (kR) =X +X ey o o o o oo (87).
The continuity of a, b, ¢ requires
Yy (BR).x. =X, . . . . . o ... (38),%F

with another condition which is, however, implied in (37) and (38). We must bear
in mind that in these equations r is supposed put =R throughout ; so that y,, X,,
X_,_, are now surface harmonics, of order 1.

Second type. We have

Inside the sphere :
d=¢,. . . . . . . . . . (39

{ 1 Cl(i),, dwu JAputs o N
E = +( + 1)¢;z-1(k" ) m n+1(k7 ) T 0,7 Q=1
. 1 d(ﬁn dwn _—]cfﬁiﬁ'g— -0”—1
G—' K dJ +( + 1)4’%— (k ) (ZJ 2711 + 1 2’}’l,+ 3‘#7&-{-1(%/7 )(‘l CU” r (40) '{
1 d¢n dwn Ji2p2n+3 d o
H T - )\‘ d/ (71 + ]— ) 4’”_1 (k/’ ) d mqjﬂ"' 1 (kq'l) .—d—zvahﬂa Q=1

* The rigorous proof of these, and of similar inferences in the sequel, may be conducted as in § 4 of
the paper ¢ On the Vibrations of an Elastic Sphere” already cited.
t These may also be written

1 den

Aot (Qn-i-l)\lr,,._](lm) dv "y { \/;,,(M)wn} &e.

Fe—
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Outside :
¢p=0,4+D_,_, e e e e e ‘(41).

a0,  d0_,
F= dz + dx

aQ, do_,_
G= dy + dy

aQ,  dQ,
H= daz + daz J

v

. (42).

Here ¢4, @ Py, @4 Q4 Q_,_y, are solid harmonics of the algebraical degrees
indicated.

These formulee give

Inside :
d d A
a= —kzlp,b(k?“)(y%— Z@)&)n
\ 4 d
b=—k~m[;,b(ko~)<zdx~—-w&;>wn . (43);
d d
o= — Iy (k) <% —y-é;)wn ]
Outside :
a=0,b=0,¢=0. . . . . . . . . . (44).

The sort of reciprocal relation between the formule (27) and (84) on the one hand,
and (40) and (43) on the other, is very remarkable.

The continuity of F, G, H at the surface of the sphere implies two relations which
we shall not require ; whilst that of «, b, ¢ involves

U (fR).w,=0 . . . . . . . . . . (4D)
This result follows also from (26), since
xut+yvrw=— ;1—:17—1_ (xv?’F+yv*G+2v*H)
2 , '
=4;T.72(n+ Dyubr)w, . . . . o . . (46).

4. From this point we must discuss separately the cases of free and forced motion,
respectively. First let us take that of fiee motion. We assume that (no matter
how) electric currents have been started in the sphere and then left to themselves.

First Type. The equations (24) must now hold not merely in the space immediately
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surrounding the sphere but right away to infinity. Hence we must have, in (32),
X,=0; and thence, by (37),
Y (BR)=0 . . . . . . . . . . (47).

The roots of this equation in kR are all real. For the case n=1 we have

kR/m=1, 2, 8, &e.
When n=2,
kR/m=14308, 2:4590, 84709, &. . . . . . . (48).
‘When n=3,
kR/m=18346, 28950, 39225, &e. . . . . . . (49).

When the value of % for any particular mode is known, the corresponding value of
N is given by (20). If 7 denote the modulus of decay, ¢e., the time in which the
currents fall to 1/e of their original strength, we have

4 /ER\—? R?
7:-)\"1:—,(——) T e e e (50).

m\ T 14

For any given mode 7 is proportional to the square of the radius, and inversely
proportional to the specific resistance; a result which may easily be obtained
otherwise, by the method of dimensions.”
For a sphere of copper [p=1642, C.G.S.] the modulus of the slowest mode of
decay is
7="000775R? second,

the unit of R being the centimetre. TFor a copper sphere, of the size of the earth
[R=6"37 X 10%] the corresponding value of 7 is very nearly 10,000,000 years.

As regards the nature of the various modes we may observe that the lines of flow
of electricity inside the sphere are the intersections of the spheres r=const. with the
cones X,/r"=const.; in other words, they are the contour lines of the harmonics y, on
a series of spherical surfaces concentric with the origin. The intensity of the current
at any point is proportional to y,(kr).dx./de, when de is an elementary angle at the
centre of the sphere in a plane perpendicular to the line of flow passing through the
point in question. The direction of the flow changes sign as we cross either the
spheres for which y,(kr)=0, or the cones for which dy,/de=0. The components of
the magnetic induction at points outside the sphere are, by (35)

d 3
a=nR¥*1y,( kR)cEX”T—%_I

v

b=nR*»* ll/jn( ]CR)C%/X”T—Q/:—I (5 1 )

d
c=n R'Qu+ lllfn(kR)EXn'r—zu_l
' J
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The simplest and most important case is when n=1. This may easily be examined
by making x,=w. The lines of motion are then all circles having the axis of x as a
common axis.

Second Type. It follows from (45) that we must now have
g(eR)y=0 . . . . . . . . . . . (52).

In the cases n=1, n=2, the first few roots of this equation are given by (48), (49),
respectively. The values of the modulus of decay corresponding to the various values
of & are to be found from (50). In the most persistent mode of the present type the
value of = for a sphere of copper is

+="000379 R? second.

As regards the nature of the motion inside the sphere we remark in the first place
that since the radial flow is zero at the surface the electric currents form closed
circuits. The flow at any point may be resolved into two components, one along,
the other at right angles to, the radius vector. The radial component is

i? w, .
4;11.72-]—1.%,(701").7 R GE)

The second or transversal component is perpendicular to that cone of the series
w,/r"= const. which passes through the point in question; and its amount is

SO+ D)} L (s4),

where de denotes as before an elementary angle at the centre of the sphere in a plane
perpendicular to the above-mentioned cone.

‘When the harmonic w, is zonal, having the axis of x (say) as axis, the nature of the
motion can be very simply expressed by means of a stream-function ¥. The motion
then takes place in a series of planes through the axis of x and is the same in each
such plane. If u, v be the components of current parallel and perpendicular to ,
viz., v=(yv+2w) /=, where w=,/(y*+2%), we have

1d .
—\I,bz-———:y—.........(55),

U= :
ds’ w dz

g | =
2

where 27 is the total flux through the circle whose coordinates are (x, =). Integra-
ting (53) over the segment of the sphere of radius r=.,/(2*+=?% bounded by this
circle we find
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2 0 .
\If.—:_—l—».n,n—}— 1.7“:,(1,,(]97')." w, sin Od0
4qr 0

Y5 dw,
——“—47‘,0,;(/‘07")539“. N 1) 8

Here @ denotes the colatitude (viz, mw=7sin ), and o, is supposed expressed in
terms of 7, 6. The integration is effected by means of the differential equation of
zonal harmonics. The most interesting case is when n=1. Writing w,=7 cos §, we
have

9
(0}

. ke
q’:*:]:;;’ tlll(]m’).

The forms of the lines of flow (W= const.) corresponding to a series of equidistant
values of ¥ are shown in the figure. The different systems of lines of flow are

separated by the spheres for which y,(k7)=0. The drawing includes the first two of
these. In the most persistent mode the inner sphere must be taken to represent the
boundary of the conductor; in the next mode the second sphere must be taken; and
SO on.

It appears from (44) that the currents in the sphere exercise no magnetic action in
the external space. Conversely no motions of the present type can be originated by
any electromagnetic operations outside the sphere. It will be shown further on that
both these statements require qualification when we take account of the finite value
of v.

By combining in the proper way solutions of the two types we can represent the
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decay of any system of currents arbitrarily given in the sphere. The determination
of the harmonics y,, o, in terms of the initial circumstances, although interesting
mathematically, would occupy too much space to be given in full here.. It may suffice
to remark that if u, v, w be any three functions satisfying the solenoidal condition (8),
and if é=dw/dy—dv/dz, &c., &c., then the values of u, v, w are completely determinate
throughout any spherical region having its centre at the origin when we know the
values of xu—+yv+2w and of xé—+yn-+2{ throughout that region. This is most readily
seen from hydrodynamical considerations. The problem then resolves itself into the
identification of the given initial values of these expressions with those which result
from our formule, viz.,

xu+yv+zw=22g.n.n+1.¢”(k7')w,, .o .. .. (564),
and ,
wbtyntel=—33 nnt L. - . . . . (56m)

The summations here embrace all integral values of n and all admissible values of .
In (564) these are given by v, (kR)=0, and in (568) by y,_;(kR)=0. The identifica-
tion can be effected by known methods.

5. Let us next proceed to consider the currents induced in the sphere by operations
outside it ; and for simplicity let us suppose that the changes in the field are periodic
and follow the simple harmonic law. The value of X is now prescribed, viz., it = 2wip,
where p is the frequency. Hence, by (20),

= — 871'2'510 / Ps
and

k=1—1)g. . . . . . . . L L (57)’
provided

F=drplp. . . . . . . . . . . (58).

Since all our formulee involve only even powers of ¢ there is no loss of generality
in taking ¢ always positive. ,

From (45) we see that w,=0, so that we have to deal exclusively with solutions of
the first type. The complete solution of the problem is then given by the equations
(27) and (32) in which the values of x,, X_,_; in terms of X, are to be obtained from
the surface-conditions (37) and (38), viz., we have

1
X,,=mX” e e e e e e e e e (59),
_ 'q’ﬂ(kR) _ R2nt+1 .
X““{¢%Mm e N )

MDCCCLXXXIIT. 3z
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The values of the functions X, are to be found as follows. It is easily seen that if
@y, bys ¢, be the components of the magnetic field due to the inducing system alone, the
expression @a,~+yby+20, must satisfy the equation

VA (@ay+ybe+20,) =0

at all points outside the inducing system, and vanish at the origin. Hence it must
admit of expansion in a series of solid harmonics of positive integral degrees, say

xay+ybyt2ce=3"0, . . . . . . . . . (61)

But it appears from (85) that we must have

g+ ybyt+rco=—3"nn+1.X, . . . . . . . (62).
Comparing with (61) we find
1
Xn=—"— e
nn+1

For instance, let the magnetic field due to the inducing system be sensibly uniform
in the neighbourhood of the sphere, say

a,=1, by=0, ¢,=0.
We find
X, =—13lz; X,=X;=&c.=0.

The formulee (33) for the currents in the sphere then become

u=0
vo=—Dy(kr)z >. . . . . . . . . . (63),
w= Dyy(kr).y
where
Al
D=r—7—: 64);
8mrry(kR) ( )

and the disturbance (a,, by, ¢;) in the magnetic field, due to these currents, is given
by

a 27

h= dx 73
d

bl:E;l?/ S0 (65),
ad x

Cl:EZZ—; QEJ
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__I_RS "h(lﬂR)_
E= 2{%%) 1}. N (1))

provided

For the full interpretation of our formulee it would be necessary to disentangle the
real and the imaginary parts, and to discard one or the other. The results would be
very complicated, even for the simplest harmonic constituent (n=1). There are
certain cases, however, in which we can use methods of approximation, and so
deduce the results of interest without much difficulty.

Thus, in the first place, let us suppose that the changes in the field are comparatively
slow ; more precisely, let the frequency p be very small compared with p/R%  Since
LR is then a small quantity, the expressions for the currents in the sphere are
approximately,

_2mipl 4 d\g )
o <ydz_ dy) "
2rip/ d d
- <d—m—w&;>Xn> (67).
__2mpf d 4
T p <mdy ydw) "

This is the result which we should have obtained by neglecting ab nitio the mutual
influence of the currents in the sphere. The disturbance in the field due to these
currents is given by

d
a=J %X,,r‘z""l )

.
bl=J@an_2”‘1} N (1))

dy o
where
_ —8rdinpRonts
= 1oniap C .. (69)

For spheres of the same size the disturbance is cateris paribus proportional to the
specific conductivity. _

Next let us examine the other extreme case, where the frequency p is large com-
pared with p/R?% and consequently AR is a large number. When { is large, the
formula (28) becomes, approximately,

() =(—).8.5. .. 2n+ 1__2_5.1

3z 2

sin (§+nz)
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Writing {=kr=(1—1)qr, and keeping only the most important term, we find

¢n(k¢)=(—)”.3.5...2n+1.%%—) S (70

Hence the factor
12 A (ler)

47 Yy (BR) |

which occurs in the expressions for the induced currents, becomes, after several
reductions,

G (N et ()

It appears from this that the disturbance inside the sphere consists of a series of
waves propagated inwards from the surface with rapidly decreasing amplitude. Thus
at a depth equal to the wave-length (v, say), the amplitude is only 1/535 of what it is
at the surface. The currents are therefore almost entirely confined to a superficial
stratum of thickness comparable with ». It appears from (58) that », =2u/q,
=./(p/p). As a numerical example let p=1642 (copper), p=4000; we find

v="64 centimetre.

The condition of the applicability of our approximation is that 2#R must be large in
comparison with ».*

Since, by (70), ¥(kR)/¢,_,(kR) is of the order 1/kR, it appears from (60) and (38)
that the disturbance in the field caused by the currents in the sphere is given by

d A
= —nR#+1 p D

(72).

~

a
b= —nR»*! o X, o1

c;=—nR**! Edz— X2t ]
The magnitude of the disturbance depends therefore on the size of the sphere, but
is independent of the conductivity, so long as the fundamental condition of our
approximation is satisfied. The reason of this is not far to seek. The greater the
conductivity the greater will be the intensity of the currents at the surface of the
sphere, but the more rapid will be the rate of diminution as we pass inwards; and it
is easily seen from (71) that one cause will exactly compensate the other.

* The above results enable us to estimate what ought to be the thickness of a sheet of a given metal
in order that it should act as a screen against a periodic electromagnetic action of given frequency. See
the paper by Lord Ravyuriew, cited below.
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In fact, if we write

, R , R , R
U =:I udr, v =j vdr, w =j wdr,

where the lower limit is taken at such a depth that the currents there are insensible,
we readily find that the currents are approximately equivalent to an infinitely thin
spherical current sheet of radius R, the components of the current at any point of the

sheet being given by
‘ . 2n41 i a X 0
YETmr YT ay)
, 2n+1/ d d o\ %
=2t <z%—xﬁ;>X N (7))

i 2n+1 d a X
=T R wdy_ydx *

6. The foregoing methods can be readily adapted to the case of a shell bounded by
two concentric spherical surfaces. The most interesting case is when the shell is
infinitely thin. The free motions of the second type then decay with infinite rapidity,
and there are no forced motions of this type. Hence we have practically to deal only
with solutions of the first type. The theory of these has been given by Professor
NIvEN, but for the sake of completeness it is here discussed from the point of view of
the present paper. :

Let w/, v/, w' be the components of the total current at any point of the shell, and
let p’=p/8, where & is the thickness of the shell. Then if all our functions vary as
¢ we shall have

pu=—\F, pv=—\G, pw'=—\H . . . .o (74).

In the hollow space inside the shell

Y
a ad
G=<zd—m—wgz—>xnr R ()X

whilst (82) hold for the external space. The functions F, G, H must vary continually
as we cross the shell, so that

=XA+Xoy . - . . . . . L (76),

at the surface.

* The conclusions of this section have an obvious bearing on the results obtained by Professor D. E.
Hucaes in his experiments with the Induction Balance (Proc. Roy. Soc., May 15, 1879).
t It is here assumed that the inducing system, if any, is situate in the space external to the shell.
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The first derivatives of F, G, H are, however, discontinuous, viz., if dv, dv”’ be
elements of the normal drawn inwards and outwards respectively, we must have

dF dF ,
ay F gy A
da  dG ,
dy 05;’7=—_47Tv Sl (77),
dH dJdH ,
dy/+dvll""‘_4‘”w J

which equations now replace (1). Hence, and from (74) we deduce

47RN

—nx,+nX,—(n+1)X_,_;= _;,T‘Xn N ()
when »=R, the radius of the shell.
In free motion X,=0, and thence
4R
L N T e e e e .
T=—N\ @ty (79)

In the case of currents induced by a system external to the shell, we find

1

and
X _py=— e X (81)
—p—1 1 +K’T -7 . . . . . . . . . ( y

when 7 has the value (79). The value of X, can be found as before when the nature
of the inducing system is known. Writing A\=2mip we see from (80) that if the
period of the disturbance be small compared with 7 the shell will almost completely
shelter the enclosed region from the electromagnetic action of the external system.*

The case where the inducing system is inside the shell may be treated in a similar
manner. We have to introduce a function x_,_, for the internal space, whilst X, is
Z€ro.

7. When the magnetic permeability u of the substance of the conductor differs
sensibly from unity, the processes of the foregoing articles require some modification.
The equations (1) must then be replaced by

Vv = —dmpu 1
VG=—4mpv ». . . . . . . (82),
V' H=—4mpw

* See Lord Ravveies, Phil. Mag., May, 1882, p. 344.
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whilst (2) and (3) are unaltered. Hence the fundamental equations (18), (19) of our

method retain the same form, provided
4o

R=——"= 0 . . . . . . . . . (83)
’ (83)

The distribution of the induced magnetization in the conductor will be solenoidal.
Hence if A, B, C be the components of this distribution, the cerresponding parts of
F, G, H will be

dN dM dL dN dM dL

respectively, where

L= ”_{é dadydz, M= ” j 1} daxdydz, N= ”E Vdacdyolz.

The integrations are supposed to extend throughout the magnetized substance, and »
denotes the distance between the element dadydz and the point for which the values
of L, M, N are required. Hence F, &, H are continuous at the surface, but their first
derivatives, and consequently a, b, ¢, will be discontinuous. Let us distinguish the
values of «a, b, ¢ just inside and just outside the conductor by the accents “and ”,
respectively. Then the parts of @', V', ¢’ due to the induced magnetisation are

av av av
B _F'd_y’ K
and those of a”, b, ¢’ are
v av  av
~& Ty Ta

where V is the potential of free magnetism, viz.:

V=([[eA+mB+n0) T,

dS denoting an element of the surface of the body, and I, m, n the direction-cosines of
the outwardly directed normal to dS, and the integration being taken over the surface
of the conductor. Hence

a”’ —%: 47l(IA+mB+nC), &c.;
or, since 4mpA=(u—1)d’, &e.,

o' +(p—1) 1 (lo'+mb' +nc’)=pa”
b +(u—1)m(le’+mb’+nc)=pb” +. . . . . . . (84).
¢+ (p—1)n(lo’+mb 4nc’)=pc”
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We notice that these conditions give
la'4+mb' +nc’=la”+mb"+nc” . . . . . . . (85),

as ought to be the case. In fact (85) is implied in the continuity of F, G, H.

8. Proceeding now to the case of a spherical conductor, let the origin be taken at
the centre, and let  be the radius vector of any point. Let us begin with the
solutions of the First Type, the formulee for which are given by (27), (32), (34), (35)
The continuity of F, G, H gives as before

bR =X+ X ey - - - . .. (86)

at the surface (r=R). In applying (84) we remark that, at the surface,

nn+1

la +mb'4-nc' = — Yu(kR). X5
and hence that
Z(la’,’l"mb,"l"nc,) =" ,n]’;- 1‘7t’n(]fR) LXns
_nn +1 Axn w1 S o
—5 +1z,b,z(kR)< —R2 +1 2 1))

by (36). Hence (84) give
[Pt R+ e R fo=sXe . L (sn)

with another condition which may however be shown to be included in (86) and (87).
The formulee for the solutions of the Second Type are given in (40), (42), (43), (44).
The surface conditions (84) yield

WER).0,=0 . . . . . . . . . . (88).

9. In the case of firce currents of the first type we have X, =0, and the equation to
determine % is

Yo 27:; E=Dp(R)=0 . . . . . .. (89).
When, as in iron, p is a very large number, we have, as a first approximation,
Y.(kR)=0.
If kR=29 be a solution of this, a second approximation is
m={1——pbe oo o)
w(p—1)

When the values of AR have been found, the corresponding values of the modulus
of decay are given by
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-2 uR2?
SEEPE

T\T P

In iron we have u=403 (THALEN), p=9827 C. G. S. The lowest root of (89), in the
case n=1, is then #ZR=1'4268x, and the corresponding value of 7 is

7="0256R~

The duration of the free currents is very much greater than in a non-magnetizable
sphere of the same size and of equal conductivity. For an iron ball one foot in
diameter the above value of = is six seconds. For an iron globe of the size of the
earth it would be 330,000,000 years.

The magnetic susceptibility of the substance has the effect of modifying the
character, as well as the duration, of the natural modes of decay. Inside the sphere

we have

la+mb+nc=—n'n1: 1. () Xns

Since, by (89), this is almost zero at the surface, the lines of magnetic induction
inside the sphere are for the most part closed curves. Their forms, in the first two
modes of the class n=1, are given by the figure of § 4. The surface of the conductor
is not, however, in these two respective modes, now represented by the two spherical
surfaces there shown, but rather by two concentric spherical surfaces of radii smaller
(for the case of iron) by about the four hundredth part.

For the free currents of the second type we have, by (88),

WER)=0. . . . . . . . . . . (92).

The natural modes of decay are exactly the same as when u=1, but the persistency is
in each case greater in the ratio of w:1; viz., the values of 7 corresponding to the
various roots of (92) are given by (91).

10. In the case of induced currents caused by a periodic variation in the magnetic
field the value of X, is to be found in the same manner as in § 5; and y,, X_,_; are
then determined by (86) and (87). If p be the frequency,

where now
P=4zup/p . . . . . . . . . . (23)

Let us examine first the case where AR is small. 'We then have, at the surface,

_ 2n+lp
Tapta+l "
MDCCCLXXXIII. 4 A

. (94),

Xn
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_(+Dp=1) _
X=X (),

approximately. The currents in the sphere are then given by
_ _2mip 2l (4
&

d
== inil -;>X,,, v=&e., w=&e. . . . . (96).

hs  principal part of the disturbance in the field, due to the presence of the sphere, is
given by
_n(n+1)(u—1) d R

G\= nptndl dp e X, bl=&c., e=&ec. . . . . . (97)

These terms express the effect of the induced magnetization of the sphere. The
effect of the induced currents is (under the circumstances supposed) small in com-
parison.

Next let us take the case of kR large. It is to be noticed that owing to the occur-
rence of the factor u in (98) this condition is satisfied by very much smaller values of
the frequency than the case of a non-magnetizable substance. We then have

L;g v ‘ _@‘ 20+ 1'\P‘n<k7m)
o P D= G T ) + G D)

The factor of X, is by (70)

— 2n+1 Ky Ry elr=R)+igr—R)
dr n(u—1)+dkR \r) ° ?

approximately. If we assume

n(p—1)+gR=Deose. . . . . . . . . (98),
gR=Dsine. . . . . . . . . (99),
this may be written
: ) - i
—,2—’32-::—1-%&~<§>%H.e9@-m'+i{N*RHa—f} C . ... (100).

From this result we draw conclusions similar to those of § 5. The depth » within
which the maximum intensity of current falls to 1/e of its surface values is

v=2m/g= £ #ﬁp

In the case of iron we have, using the same data as before, v="078 centim. for a
frequency of 4000, or ».="78 for a frequency of 40. The value of » is thus, for the
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same frequency, very much smaller than in copper. But the integral currents induced,
under the same circumstances, are much more intense in an iron sphere than in a
copper sphere of the same size. Integrating (100) with respect to. r through the
thickness of the stratum in which the currents are sensible, we find for the components
of flow at any point of the equivalent current sheet

g [y d_, Ny
w=K <y. TH d?/) 24

;T d a
=K <z i EQ) X, ¥ (101),
S R
where ‘
. 2n+1 gR (.
K=-— 5/ 2m RD”6(4 ). (102).
The disturbance in the field, due to the presence of the sphere, is given by
a,=n dX“”' , b=&c., c;=&c. . . . . ., . (103),
where
] 27’b+1/.L -ze Rentl
X_,H_[ - 1] X ... (100)

The order of magnitude of the first term within [ ] depends on the relative magni-
tudes of gR and p. Solong as gR, though itself large, is moderately small in comparison
with np the effect is mainly due to the induced magnetization of the sphere, and is
much the same as if the substance were destitute of electrical conductivity, although
the distribution of the magnetization within the sphere is very different. On the
other hand when ¢R is large compared with nu the first term in [ ] is less important,
and the results approximate more to the form which they would assume in the case of
infinite conductivity. The following table gives the values of D and e for iron, in the
case n=1, corresponding to various values of ¢R.

0R. 10. 0. 100. 1000.
D | 412 455 512 1722
e 1°.23" 6°.19’ 11°.16/ 35°.30"

The relation between ¢ and the frequency p is for iron

q=127./p.
4472
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11. In the whole of the preceding investigations it has been assumed that the
quantity j of § 2 may without sensible error be put =0. I proceed to sketch the-
method to be pursued when we do not make this assumption, confining myself for
simplicity to the case of p=1 everywhere. The fundamental equations to be satisfied
are :—for the spherical conductor (18) and (19); for the surrounding dielectric (21)
and (22).

In the solution of the First Type the values of F, &, H and of a, b, ¢ inside the

sphere are then given by (27) and (34), respectively, Outside the sphere we shall now
have

F= ¢n(j¢)<y-——z dy>X +¢—n—1(j7")<y 7 d)X_n_l .. . (105),

dy

where X,, X_,_; are solid harmonics of the degrees indicated. The values of G and
H may be written down from symmetry. We thence find

.727 20+3

. dX, P :
a:—{(n+ D_1(y7) i m ”_,_1(]’]‘) T X, 1}+ terms in X_,_; . (106),

with symmetrical formulee for b, . The “terms in X_,_; ” are to be.derived from the
preceding line by writing —n—1 for » throughout.
The continuity of F, G, H at the surface of the sphere requires

kR =9 R) Xatun GR) X ey -0 (107),
when »=R. The continuity of «, b, ¢ requires in addition
tIJ”"’].(IC]R'))<” lp”—l JR)X”_l— Q— 1 2 + 1"#—%(.7 R)X._n_l . . . (108).

In the solutions of the Second Type the forms of F, G, H, a, b, ¢ inside the sphere
are given as before by (40) and (43); whilst in the dielectric we shall now have

¢=&,+P_,_, . . . . . . . . . (109),

_ 1_ Eig)l" :—|_- d¢_n_1 ]'27&n+3 —
F— N dx - + +1 ll’”—l(.?lr) 2,n+1 2n+3¢”+1(‘7,r)dx "

+ terms in O_,_; . (110),

with symmetrical formule for G, H. The symbols ®,, ®_,_;, Q,, Q_,_, stand for solid

harmonics of the algebraical degrees indicated by the suffixes. The foregoing expres-
sions make
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=_j21[;n(]1)<y———z >Q+termsmﬂ_n_1 coeoo (111,

with symmetrical formulee for b and c.
The continuity of ¢ at the surface requires

b=+ Py . e . . ... (112),

when »=R. The continuity of F, G, H requires
— %' (n+ s (FR)a,

= = I R (1 D) ey (R)OL, . . (113)
and

kR? P, FR? .
"on+12n+ 3¢”+1(kR) = r ngm‘l’nﬂ(] R)Qu—mp_o(JR)Q g . (114).

Adding (113) and (114), and taking account of (112), we find

{ERY,(kR)+(n+ 1)¢(kR)} 0,
={JRYL(R)+ (n+ )$(R) } Q0+ {TRY _ucs (JR) =1y GR)} Oy (115),%

where some reductions have been effected by means of (29) and (30).

The continuity of o, b, ¢ requires
FRY,(kR)w, =R (jR) 2+ RNy (JR)Q ey .+ . . (116),

12. Let us now apply the foregoing results to the case of free motion. A certain
relation must then hold between the surface values of X, and X_,_;, and also between
those of Q, and Q_,_,, viz.: a relation expressing that the disturbance at infinity in
the dielectric is finite. It may be shown that F, G, H are determinate when the

values of xF+4-yG-+2H and of za-+yb+zc are known at every point of space. Now
in the first type we have «F+yG+2zH=0, and

zo+ybtze=—nn+L{(r) X+ Yo (r)Xoumrd - . o (117).

For lai‘ge values of » we have
sin ( jr+n7§r)
( j,.)n‘l-l

* Equations (109) and (115) express that the tangential components of current just outside and just

inside the sphere are in the ratio of j2 to %% This may also be easily deduced from the fundamental
equations (18) and (21).

$(jr)=(—).3.5...2n41. (118).
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The last line of (28) is not a convenient expression when n is negative. But we
readily deduce trom (30)

N () =— L.¢

2n_1°@[4_(2u—1)‘,’—%(g)]- e o (119)5

and by successive applications of this formula of reduction we find

YonlO=137 5.1\ ag) ¢ (120);

(=g < d ) cos ¢
it

since, by (28), ¥_({)= cos { This result, like (28), has been given in somewhat
different forms by various writers.® When r is large it gives

. -\ '7~ 7% .
\b,n_l(ja»):l?g—'%%%—l— cos (‘”+ n g) coe e . (121).
In free motion \ is real and negative. We may therefore write j=—i\/v=1y where

y is real, and may be taken positive. Substituting in (118) and (121), and expressing
that the terms in ¢” must disappear from (117), we are led to the following relation
between the surface values of X, and X_,_;

. ( jR)2n+l

85. . bl X,—ip X =0 . . . .. (122).

Simil.arly in the free motions of the second type we must have

(jR n+1 -

3.5... 2n+1.9,;—i1 Q=0 . . . . . (123)

3. 2p—1"T

The equation to determine the various values of A is to be obtained, in the first
type by elimination of x,, X,, X_,; between (107), 108), and (122), and in the
second type by elimination of w,, ©,, O_,_; between (115), (116), and (123).

In all practical cases jR is exceedingly small. If we neglect all powers of jR
above the second we have

X,=0, Q,=0.
In the first type we then obtain
- PRe
t/;n_l(lcR)=—2-n—:]f%—+i¢,,(kR) C e e (129),

approximately. For a first approximation #R=39, where $ is a root of ,_,($)=0;
and for a second

kR=3(1-—-1J3), . (2s).

* See C. Nivex, Phil. Trans., 1880, p. 126. Also Hrivg, ¢ Kugelfunctionen,’ t. i., § 60.
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Now, j*/l*=Np/4m?®, and A=—Fp/dn=—pI?/4wR?, approximately. —Hence (125)
becomes

. 9 .
kFR=9 {l-—]—m} e e e e (126)

In the second type we have

PR, (kR) R
IRy (R) + (n+ Dy (iR)

or

. .2 7 .
Y(R)=—ZJRy,(R) . . . . . . . . (127),

to the same degree of accuracy. For a first approximation kR=239, a root of ¥,(9)=0,
and for a second

2

lcR=9<1-.-—’—2>
" p*¥? ‘ .
9(1+16W%2R2>. . (198).

By combining together in the proper way solutions of this' type we should be able
to represent analytically the decay of any given non-uniform electrification of the
surface of the sphere. The formula (128) would indicate that in any particular mode
the lines of flow of electricity in the sphere are for the most part cloged curves, all
those which abut on the surface being confined to a stratum of thickness p29%/16n7*v*R.
For n=1, and 9/r=14308, this =1'42X 107X p?R~%. " In the case of any ordinary
metallic conductor this would be much smaller than the dimensions of a molecule.*
A result of this character cannot of course be interpreted literally. ~All that we can
safely assert i3 that the currents by which the redistribution of the superﬁcml
electrification is effected are confined to a very thln film, and are probably subject to
laws not yet investigated.
~ In the case of a globe of water [p—'? 18><1()10 at 22° C.] the result is more
intelligible ; viz., the thickness of the stratum in question is then="73R",

13. The case of periodic induced currents [A=2mip where p is prescribed] may be
treated as follows, Let P, Q, R denote the components of electromotive force, viz.

__d_ — =
P__dw A.F, Q—&Co, R—&C.

It is easily seen that if the suffix , be used to distinguish the parts of a, b, ¢, P, Q,
R due to the inducing system, the functions wa,+yb,+2¢, and 2P;+yQ,+2R, must
admit of expansion (in the neighbourhood of the origin) in the forms

#* There is nothing peculiar to MaxwgLL’s theory in the order of magnitude of this result,



548 PROFESSOR H. LAMB ON ELECTRICAL
xag+ybytec,=34, (70, . . . . . . . . (129),

aPy+yQu+zR,=3¢,(ym)4, . . . . . . . (130),

where @,, Z, are solid harmonics of positive degree n. Now za-+yb+zc and
xP4+yQ+42R must differ from the above by terms representing a disturbance
propagated wholly outwards. But

aa+yb+ze= —n.n41. {4, (/") XY (57 Xumn}s
2P4+yQ+2R=—N\n.n+ 1. {.(jr) Q4 Y_ns(Jr)Q 3.

The condition that

nn+1

8 (.W)(X + >+1//—n_51(.7.7")X—n=1

should represent a disturbance travelling outwards may be shown to be

2n+1
3.5...2n+1< o+ @n)+o UR)Z —X,=0 . . . (131),

where in the harmonics X,, &c., 7 is supposed put =R. Similarly we have, on the
same understanding,

Z . R2n+1
3.5...2n+1( + n+n>+ U g =0 ... (132).

The equations (107), (108), and (131) determine y,, X,, X_,_, in terms of ©, ; whilst
(115), (116), and (132) determine w,, Q,, Q_,_, in terms of Z, Thus the complete
solution of our problem is effected.

Introducing the consideration that jR is small, we find, in the solutions of the

second type,
1 Zn

==y n+l
approximately, and thence

on+1 2

L. .. ... (138),

Py (kr)w,= —atix

by (115) and (116). If o, denote the n™ harmonic constituent of the surface dis-
tribution of electricity, we deduce

1do, 1 22+1

TN At 4R

T ... ... (134),
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For the first harmonic constituent we have the simple formula

Ulzw. (135),
if /7, ¢/, I’ denote the components of the electric displacement which would obtain at
the origin if the spherical conductor were removed.

The equation (134) expresses that so long as pp is small compared with +* the
surface-density of electricity at any point will have at each instant the statical
value corresponding to the distribution of electromotive force at that instant due to
the external system. The arrangement of the currents in the sphere by which the
changes in the superficial distribution are effected will however depend materially on
the relation between the period of the changes in the field and the time of decay of
free currents in the sphere. The discussion of this point can be conducted as in the
case of the solutions of the first type, treated in § 5, and the results are analogous to
those there found. When the spherical harmonics involved are zonal, the work and
the interpretation are much facilitated by the use of the current-function ¥, whose
value is given by (56).
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